Science

Nonlinear light microscopy has opened up new possibilities in observing and interpreting complex biological processes. However, the use of intense light in this technique raises concerns about the potential damage it can cause to living matter. Despite its benefits, the mechanism behind the irreversible perturbation of cellular processes by intense light remains a significant gap
0 Comments
In a recent study published in Science Advances, researchers Prof. Wang Can and Prof. Xu Xiulai have delved into the relationship between valley polarization switching and polarization degree in electrically controlled transition metal dichalcogenide heterobilayers (hBLs). This groundbreaking research highlights the importance of twist engineering in manipulating the valley degrees of freedom of interlayer excitons
0 Comments
The realm of space has always fascinated scientists and researchers due to the unique conditions it offers for experimentation. Thanks to human ingenuity and the absence of gravity, the field of material science has benefited greatly from studies conducted in space. From the development of smartphones with advanced navigation systems to futuristic optical devices, space-based
0 Comments
Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences, in collaboration with researchers at Central China Normal University, have recently made groundbreaking progress in the field of medical imaging. Their research, published in Nature Communications on Feb. 21, introduces a high-performance perovskite X-ray complementary metal-oxide-semiconductor (CMOS) detector that has the potential to
0 Comments
Soft robotics is an emerging field that holds immense potential for revolutionizing various industries, from healthcare to manufacturing. In a recent paper published in the journal Physical Review Letters, physicists from Virginia Tech have introduced a groundbreaking discovery that could significantly enhance the performance of soft devices, particularly in terms of agility and flexibility. The
0 Comments
In a recent publication in Science Advances, researchers from the University of Bristol have achieved a significant milestone in the field of quantum technology. They have successfully integrated the world’s smallest quantum light detector onto a silicon chip, marking a groundbreaking achievement in the realm of quantum technology. This advancement represents a crucial step forward
0 Comments
Majoranas, named after an Italian theoretical physicist, are complex quasiparticles that have the potential to revolutionize quantum computing. These particles possess unique characteristics that differ from regular electrons, making them intriguing to researchers in the field of quantum science. Majoranas can exist in certain types of superconductors and in a quantum state of matter known
0 Comments
Researchers at the University of Illinois Urbana-Champaign have introduced a groundbreaking approach to understanding diffusion in multicomponent alloys. By breaking down diffusion into individual contributions, known as “kinosons,” they were able to utilize machine learning to efficiently model the alloy and calculate diffusivity in a fraction of the time compared to traditional methods. Diffusion in
0 Comments
The latest study conducted by University of Maryland (UMD) researchers led by You Zhou, an assistant professor in the Department of Materials Science and Engineering, has unveiled groundbreaking advancements in telecommunications technology. Optical switches, which are crucial for transmitting information through telephone signals, traditionally relied on a combination of light and electricity. However, Zhou’s innovative
0 Comments